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Abstract

In this paper, we present a statistical model of spacetime trajectories based on a fi-
nite collection of paths organized into a branched manifold. For each configuration of the
branched manifold, we define a Shannon entropy. Given the variational nature of both the
action in physics and the entropy in statistical mechanics, we explore the hypothesis that
the classical action is proportional to this entropy. Under this assumption, we derive a
Wick-rotated version of the path integral that remains finite and exhibits both quantum
interference at the microscopic level and classical determinism at the macroscopic scale.
In effect, this version of the path integral differs from the standard one because it assigns
weights of non-uniform magnitude to different paths. The model suggests that wave func-
tion collapse can be interpreted as a consequence of entropy maximization. Although still
idealized, this framework provides a possible route toward unifying quantum and classical
descriptions within a common finite-entropy structure.

1 Introduction

Dynamical evolution in physics takes different forms depending on the theoretical framework
employed. In classical mechanics, systems are typically described by trajectories in state space
that evolve deterministically over time. Within such frameworks, including Newtonian dynamics
and general relativity, initial conditions uniquely determine future states, and the evolution is
governed by well-defined differential equations.
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Stochastic models introduce probabilistic elements into the evolution [1]. Here, transitions be-
tween states occur with specified probabilities, reflecting either intrinsic randomness or the influ-
ence of untracked variables. Stochastic models are frequently used in statistical mechanics and
other fields where deterministic descriptions are either impractical or insufficient.

Quantum mechanics offers a different structure altogether. The state of a system is described
by a complex-valued amplitude in a Hilbert space, evolving deterministically under a unitary
operator that is typically governed by the Schrodinger equation. Despite this deterministic
evolution, measurements yield outcomes according to a probability distribution given by the
squared magnitude of the amplitude. This combination of continuous evolution and discrete,
probabilistic measurement outcomes is a defining feature of quantum theory. Within standard
interpretations such as the Copenhagen view, this is accounted for by the postulate of wave
function collapse, which assigns probabilities to measurement outcomes via the Born rule.

The path integral formulation provides a useful and widely applicable representation of quantum
evolution. In this approach, the transition amplitude between initial and final states is expressed
as a sum over all possible paths, each weighted by a complex exponential of the classical ac-
tion. This formalism, introduced by Feynman and foreshadowed by Dirac, captures quantum
interference effects naturally and has proven effective in both conceptual and computational con-
texts [2, 3]. Analogies have been drawn between this approach and the continuum descriptions
in statistical or fluid systems, where macroscopic order emerges from an underlying multiplicity
of microscopic configurations [4].

In this paper, we develop a modification of the path integral framework based on a finite set of
paths arranged in a branched manifold structure. Rather than integrating over a continuous space
of trajectories, we consider a discrete ensemble of paths with defined branching and intersection
points. Each path contributes an amplitude, and the total transition amplitude is given by a
weighted sum over the ensemble.

A key aspect of the model is the probabilistic sampling of paths. The sampling distribution is in-
fluenced by the structure of the branched manifold, in particular by the frequency of intersections
between paths. Configurations with more frequent intersections are assigned higher probabili-
ties, introducing an effective entropic bias toward path cohesion. This results in quantum-like
interference at small scales and convergence toward classical behavior at larger scales, where the
ensemble becomes dominated by a narrow set of similar trajectories.

The branched manifold is formally represented using a simplicial complex, and the model in-
corporates a conserved branch weight to ensure consistency across the ensemble. The resulting
formulation produces a Wick-rotated version of the path integral with finite amplitudes and a
clear mechanism for the transition from quantum to classical behavior. The branched manifold
structure is based on the theory of foliations and expanding attractors [5, 6]. We construct this
framework in detail and examine its implications for modeling dynamical systems across different
regimes.

2 Geometric framework: Finite branches
We develop our model within the geometric setting of branched manifolds, which generalize

smooth manifolds by permitting singularities at points of branching or intersection. These struc-
tures provide the necessary scaffolding to capture the superpositional aspects of quantum theory



while maintaining a finite, combinatorially tractable basis for spacetime histories.

The tools introduced in this section form the foundation for subsequent constructions. In partic-
ular, we define a simplicial decomposition of the branched manifold and introduce a conserved
branch weight. These elements allow for a natural expression of the path structure, branch in-
tersections, and ultimately the entropy associated with each configuration. The computation of
this entropy—first at the kinematical level in Section 3 and later dynamically in Section 4—relies
on the framework developed here.

2.1 Simplicial decomposition

An embedded branched n-manifold is modeled as an n-complex in a higher-dimensional ambi-
ent space such that each point admits a well-defined n-dimensional tangent space. To encode
quantum superposition geometrically, we posit that spacetime itself is a branched manifold M,
composed of a finite union of smooth branches [5, 6]. Each branch carries its own differential
structure, ensuring the existence of a local tangent space at every point in M.

For concreteness, we work within a Minkowski space of (n+1) dimensional coordinates (¢, x1, ..., Z,),
collectively denoted by x. The physical fields are defined over a fiber bundle R**! x &, where

® is a finite-dimensional complex vector space encoding internal degrees of freedom [7, 8]. A
branch b is represented by a smooth section ¢ : R*"*! — ®, assigning to each point x a unique
field value o(x). A path is then the restriction of a branch to a subset U C R™*! naturally
capturing the localized structure of field superposition, which will be discussed in Section 3.2.

Furthermore, we introduce a coordinate map X : M — R"*! associating to each point in M its
spacetime coordinates. We define the inverse image of X as

X7'x)={ye M| X(y) =x}, (1)

which returns the set of all points in M projecting to x.

To regulate branching, we introduce a conserved, positive branch weight w : M — R* satisfying
w(y) = L>0, VyeM, (2)

where L is constant. Consequently, only a finite number of branches can intersect at any given
point.

To ensure well-posedness of our framework, we assume that spacetime is composed of a large but
finite number of branches. This restriction ensures the finiteness of sums appearing in the path
integral and entropy expressions. It also reflects the hypothesis that in any physical process,
only a finite number of distinct histories are realized. Not only does this discretization avoid
divergences, but it is also conceptually aligned with a minimal resolution of spacetime at the
fundamental level.

We represent the branched manifold M using a simplicial complex [9-12], where each (n + 1)-
simplex o denotes a simply connected region of spacetime and each n-simplex 7 represents a
shared face between neighboring simplices. We will consider the case where w is locally constant
on each (n + 1)-simplex o and denote it by w,-.

Branch weight conservation across shared boundaries is encoded using the boundary operator
On41 from simplicial homology. For an oriented k-simplex o = (vo,...,vx), where v; are the



vertices within the simplex, we define
k

Or(0) =D (=1)*(vo, .-, Bi ..., vk, (3)

i=0
where ?; indicates omission of v;. Then we can express the global conservation condition as
§ Wo Opt1(0) =0, (4)
oeM

which illustrates the conservation of branch weights (within a simplicial representation) at each
shared n-simplex. This structure is illustrated in Figure 1, where two adjacent (1 + 1)-simplices
share a boundary. The boundary operator assigns opposite signs to the shared edge, enforcing
the constraint w, = w; under the assumption of a single branch.

t

Figure 1: We depict a 1+1-spacetime with just one branch, which is decomposed into
several simplices. The value of the field ¢ is not shown in this diagram. The dashed
line represents where two simplices meet. The left simplex has branch weight w,, and
the right simplex has branch weight w,. The branch weight conservation constraint
implies that w, = wp in this case.

We now turn to the representation of paths. Each path corresponds to a union of simplices, and
we define an incidence matrix A,; indicating whether simplex o belongs to path p;:

A, = {1 ifo € Di, (5)

0 otherwise.

Branch weights on simplices are then expressed as linear combinations of path weights:
i

Figure 2 illustrates a representative branching diagram. The paths in this figure are denoted
by LML, LMR, RML, and RMR (corresponding to left-middle-left, left-middle-right, right-
middle-left, and right-middle-right). Using those paths, we write Equation (6) as

w1 1 1.0 0

wo 0 0 1 1 WML

ws _ 1 1 1 1 WILMR (7)
waq 1 1 1 1 WRML ’

Wk 1 01 0 WRMR

We 0 1 0 1
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Figure 2: We show a branched 0+1-dimensional spacetime manifold in which
branches intersect and subsequently diverge. The 1-simplices along these branches
carry branch weights w1 through wg. The 1-simplices intersect at O-simplices (i.e.,
vertices).

As we discuss in Section 3, these path weights determine the statistical distribution over path en-
sembles, linking the simplicial geometry of the branched manifold to entropy-based probabilistic
dynamics.

2.2 Quantum superposition from finite branches
We now illustrate how superposition arises in this framework.

Consider two branches b; and by with corresponding fields ¢; and ¢s. At a spacetime point
x, these may yield distinct field values, contributing to a superposition. If ¢1(x) = pa(x), the
branches intersect at x, and the resulting superposition effectively reduces to a single state. In
general, the number of distinct field values present at x corresponds to the number of branches
with inequivalent values at that point.

Suppose that the manifold M is composed of multiple branches, each equipped with a distinct
field ;. At a given spacetime point x, the wave function ¥ (x) is defined as the weighted sum

over fields on branches:
v = > wy)ey). ®)
yeEX~1(x)

This sum has a finite number of terms due to the lower bound on w(y) and the branch weight
conservation condition. Summing over all branches at a point x gives a total branch weight

wr(x)= Y w(y). 9)

yeX—1(x)

The conservation condition in Equation (4) implies that the total branch weight is constant as a

function of the coordinates:
dywr(x) =0. (10)

We assume that branches intersect at x if their associated fields are equivalent as rays, i.e.,
v1(x) = z¢pa(x) for some nonzero z € C. These intersections are the quantum interference of
this framework.



Note that ¢ = we is invariant under the rescaling w — aw, ¢ — ¢/a, highlighting a degeneracy
in the representation. Since w is conserved and ¢ is not, such transformations do not yield
equivalent systems. Furthermore, if the number of branches exceeds dim ®, the decomposition of
1 into field and weight components becomes non-unique. In this framework, the wave function
1) does not encode the entirety of the quantum information; rather, the branched manifold itself,
including the distribution of branch weights, serves as the full information carrier. As we will
see, this internal structure plays a crucial role in determining entropy and dynamical evolution.

3 Kinematics: Entropy from conservation of branch weight

3.1 Conservation law of branch weight

We now examine how the conservation of branch weight constrains the structure of the branched
manifold and affects its entropy.

Figure 2 depicts a simple 0+ 1-dimensional branched manifold with intersecting and separating
branches. Each 1-simplex ¢ is bounded by two O-simplices 7, and the boundary operator 9,1
assigns a sign to each vertex based on orientation. Applying the conservation condition from
Equation (4), we obtain the following constraints for the configuration in Figure 2:

wy +wg —wsz =0, (11)
W3 — Wy = 07 (12)
Wy — (w5 + w(;) =0. (13)

These relations can be compactly expressed as a linear system:

w1
w2
w3
Wy
Ws
We

The space of valid branch weight values w, lies in the null space of this matrix. If, for instance,
wy and wo are fixed, then the only remaining degree of freedom is the allocation between ws and
We -

To further illustrate the relationship between branch intersections and degrees of freedom, we
compare two examples in Figure 3. In Figure 3(a), frequent intersections among branches lead
to a high-dimensional null space for branch weights. In Figure 3(b), branches have fewer inter-
sections and a correspondingly lower-dimensional null space.
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(a) (b)

Figure 3: We see two examples of 0+1-dimensional branched manifolds. (a) A
branched manifold with high branch cohesion enables frequent intersections. This
case has a higher-dimensional null space of branch weights, corresponding to greater
entropy. (b) A branched manifold with little cohesion has infrequent intersections.
This case has less entropy.

In the simplicial decomposition of the branched manifold, the branch weight conservation con-
straint is given by Equation (4). We can trivially convert the boundary operator 0,41(0) to a
matrix:
+1, if 7 appears positively in 9,,11(0),
D,, =< —1, if 7 appears negatively in 9,,11(c), (15)
0, otherwise.

The conservation law then takes the form

> Drow, =0, (16)

ceEK

which asserts that the vector of branch weights w, lies in the null space of D,,. Valid configu-
rations must also satisfy the lower bound w, > L for the fixed constant L > 0.

The dimensionality of the null space of D,, determines the number of independent degrees of
freedom in the branch weight configuration. As the number of adjacent (n + 1)-simplices sharing
a common n-simplex increases, so too does the dimensionality of the null space. This implies that
more frequent branch intersections enlarge the space of admissible branch weight configurations,
thereby increasing the entropy associated with the manifold.

While the branch weight entropy captures correlations between intersecting branches, it does
not capture the full statistical behavior of individual paths. To analyze the latter, it is useful
to reparameterize branch weights in terms of paths, using a change of basis from simplices to
paths. As we shall see, the entropy of paths plays a critical role in the probabilistic formulation
of dynamics.

3.2 Entropy of the branched manifold

The branched manifold exhibits two distinct sources of randomness: the stochastic fluctuations
of the field ¢ and the freedom in assigning branch weights w. The interplay between these degrees
of freedom determines the equilibrium behavior of the system. In particular, a dynamic balance



emerges between the entropic tendency of fields to differentiate (favoring branch separation) and
the entropy of branch weights (favoring intersection and cohesion).

To formalize this, we define a map ¥ that assigns to each branched manifold M a corresponding
wave function ;. At a point x € R"*! the wave function is given by ¥/(x), as defined in
Equation (8). Thus, 9y (x) € @ lies in the space of field values, and ¢ itself defines a smooth
section of the fiber bundle R”*! x ®. In this sense, the wave function 1, can be interpreted as
an effective, coarse-grained branch.

Restricting to an open subset U C R™*!, we may identify the restriction of v;; with a path
p = Yulu. To quantify the number of distinct branched manifolds that are consistent with a
given path, we define the inverse image of this map as

U p) = {x | ¥(x) =p}, (17)

where we implicitly assume that the total branch weight on each branched manifold x is the
fixed total branch weight wy. The set ¥~!(p) thus consists of all branched manifolds that yield
the same effective path p. In this sense and in analogy with statistical mechanics, the elements
X € U~1(p) represent the microstates corresponding to the path p.

The randomness in ¢ and w induces a probability measure P(x) on the space of branched
manifolds. We use this to define a Shannon entropy over the ensemble of microstates consistent
with the path p:

Salil == [ P00 PO (18)

Unlike conventional thermodynamic entropy, which is typically defined at a fixed time, the en-
tropy Sen[p] is defined over both space and time, reflecting the full kinematical history encoded by
the path p. The entropy Sen[p] quantifies the statistical weight of a given coarse-grained trajec-
tory in the branched manifold and will serve as a central quantity in the dynamical considerations
to follow.

4 Dynamics: Entropic action principle

If the branched manifold is in a state of local equilibrium, then small variations in the path p do
not increase the entropy. In this regime, the entropy functional is stationary:

6Senlp] = 0. (19)

This observation motivates the use of entropy as a variational principle. Other work has used
the idea of relating action to entropy [13, 14]. In the discussion that follows, we propose that
the dynamics of the system can be captured through an action proportional to Sey, the Shannon
entropy on branched spacetime manifolds.

We define the action functional S[p| as a linear rescaling of the entropy:

S[p] = _aSen[p]v (20)

where o > 0 is a constant that converts entropy into units of action. The negative sign ensures
that paths with higher entropy correspond to lower action, consistent with the usual extremiza-
tion principle.



While the field ¢ exhibits a stochastic behavior governed by an underlying probability distri-
bution, the precise nature of this distribution is not fully specified by our assumptions. To
proceed, we postulate that the induced dynamics for the wave function v are consistent with the
conventional unitary evolution of quantum mechanics.

4.1 The path integral as a linear approximation of a nonlinear model

The finite lower bound w > L on branch weights introduces a nonlinearity into the model. In
particular, a branched manifold with total branch weight wy = L consists of a single branch,
but if wp < L, no valid branching configuration exists. This discontinuity implies that the path
ensemble cannot be scaled arbitrarily and reflects the underlying discreteness of the system.

Such nonlinearities are crucial for modeling quantum measurement, as we explore in Sections 4.2
and 5. They represent departures from the standard linear formalism of quantum theory, which
is otherwise recovered as an effective approximation in regimes where the branching structure is
sufficiently dense and near equilibrium.

Moreover, a quantum theory is fundamentally linear and unitary, yet measurement introduces
abrupt, nonlinear updates to the wave function [15-17]. A model that seeks to incorporate
both regimes must account for this dichotomy: the deterministic linear evolution of isolated sys-
tems and the nonlinear, stochastic behavior during measurement. The entropy-based framework
proposed here accommodates both by treating linear quantum mechanics as a limiting case [18].

We now derive an approximate path integral based on the entropic action S[p]. Let M., denote
the set of paths beginning in configuration c; at time ¢; and ending in cp at time tp. Applying
the standard time-slicing argument [2, 3], we associate a phase eli/MS] to each path p. Each
path p; € M, ., is assigned a weight w;, as defined in Section 2.1. From Equation (8), the wave
function is a weighted sum over the branches. In the transition from the initial configuration cy
to the final configuration ¢y, each path contributes a weighted phase w; e(#/"5Pil Summing the

contributions of each path in M,,., gives

7 — Z w; e/ M8l (21)

Pi€Mejep

Since the complete branching structure is typically unknown, direct computation of Z is im-
practical. However, we can calculate its expected value [Z] by integrating Z over all branched
manifolds that have total branch weight wp. For a path p;, its branch weight w; depends on the
branched manifold of which p; is a part, and we use statistical properties of the branch weight
to determine its contribution to E[Z].

In the linear limit of quantum mechanics, the paths of a branched manifold are independent of
each other. The branch weight of a particular path is a degree of freedom. For independent
paths and an entropy maximizing distribution of branch weights, a branch weight has the same
probability distribution regardless of the path to which it is associated. Every branch weight
therefore has the same expected value, wg. If a path is not present in a given branched manifold,
then its corresponding branch weight is effectively zero. We write P(p;) to indicate the probability
that a path p; is in a given branched manifold. A path p; is either present in a branched manifold
and has a branch weight with expected value wg, or else it is not present and its branch weight
is zero. Therefore, for a particular path p;, the expected value of its branch weight w; over all



branched manifolds is

As established in Section 3.2, the entropy Sen[p] is the logarithm of the number of branched
manifolds that yield the wave function p. The probability of a particular path p; is proportional
to the exponential of its entropy. Using the action-entropy relation, this implies a probability

P(p;) x e kSl (23)
for some constant k > 0.

The action of a path S[p;] depends only on the path p;. The factor e(i/MSpi] ig therefore constant
when we integrate over all branched manifolds to calculate the expectation value

E [wz e(i/h)S[m]} = E[w;] eW/M5Pil = g P(p; ) el /WSl o o(i/h=k)SIpi], (24)
Neglecting normalization constants and converting the sum to an integral over paths, we obtain
BZ) = ¢ [ tm-sipy, (25)

where Dp is the path measure and { is a normalization factor. This is a Wick-rotated variant
of the standard Feynman path integral [19], where due to Equation (20) the entropy acts as an
effective action in Equation (25).

In the standard Feynman path integral formulation, all kinematically allowed paths contribute
equally in magnitude—each path carries the same amplitude weight, differing only in phase
through the classical action. However, in the present framework based on branched manifolds
and entropic dynamics, not all paths are treated equally. Instead, each path carries a distinct
probability, reflecting its statistical likelihood of occurring within the ensemble of possible evo-
lutions. Physically, this means that a path is more likely to appear if it is associated with higher
entropy—that is, if it corresponds to a greater number of compatible micro-configurations within
the underlying simplicial complex. The weighting encodes an entropic preference, biasing the
system toward histories that are more combinatorially accessible, or more probable in an infor-
mational sense. This breaks the uniform weighting assumption of standard quantum mechanics
and introduces an effective measure over paths.

Furthermore, this formalism provides a natural context for interpreting the Wick rotation, the
transformation to imaginary time used in many path integral treatments. In traditional quantum
mechanics, the Wick rotation serves to regularize divergences, ensure convergence of the integral,
and define a correspondence with statistical mechanics [19, 20]. In our setting, the Wick rotation
can also be viewed as selecting the dominant entropic configurations, allowing entropy-weighted
paths to contribute with real-valued probabilities, rather than oscillatory phases. This not only
improves mathematical control but also clarifies the physical interpretation of the path sum as
a probability-weighted statistical ensemble.

For paths far from equilibrium, the nonlinear constraints of the model render this expectation
inaccurate. Such nonlinear effects are central to the behavior of measurements, which we now
examine.
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4.2 Measurement

The entropy-weighted path integral in Equation (25) favors configurations of high entropy and
low action. However, this condition alone does not enforce wave function collapse. For example,
a measurement process may allow several macroscopically distinct outcomes, each associated
with comparable entropy and action. In such cases, multiple coarse-grained paths may remain
dynamically viable.

The collapse mechanism arises instead from the constraint on branch cohesion encoded in Equa-
tion (16). Entropy is maximized when branch intersections are frequent, implying that nearby
branches must remain similar. A superposition of macroscopically distinct states (e.g., different
measurement outcomes) disrupts this cohesion. Pathological field configurations between inter-
secting branches would incur large action penalties and are, therefore, statistically suppressed.

Thus, to preserve high entropy and low action, the branched manifold selects a configuration
in which all branches align with a single measurement outcome. This alignment constitutes the
wave function collapse in our framework.

t

¥

Figure 4: Gray lines indicate possible field configurations corresponding to two dis-
tinct measurement outcomes. After the measurement event, the field values diverge
significantly. Thin lines represent branches of the spacetime manifold. The entropy
constraint requires that branches remain close to each other. Since they cannot si-
multaneously remain close to both outcomes, the manifold collapses to a single result
(here, the right-hand outcome) to maximize entropy.

5 Discussion

The atomic model of matter excels at bridging the gap between discrete, microscopic particles
and smooth, macroscopic behavior: by averaging over the random motions of a finite collection
of atoms near equilibrium, one derives continuum equations such as the heat, wave, and diffusion
equations. In a parallel vein, Jacobson [21] showed that imposing a finite entropy density on
quantum fields—and identifying that entropy with the Unruh effect—forces spacetime geometry
to obey the Einstein equation, thereby linking quantum thermodynamics to classical gravity.

Our model adopts the same guiding principle of finite entropy, but implements it through a
branched manifold that mimics Feynman’s path integral while summing only over a bounded,
discrete set of trajectories. To forestall an unmanageable proliferation of histories, each branch
carries a conserved, strictly positive branch weight, ensuring a lower bound on its contribution.
This construction preserves the essential interference structure of quantum mechanics yet guaran-
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tees convergence and a well-defined entropy, uniting microscopic stochasticity with macroscopic
differential laws in a single finite-entropy framework.

The wave function v in our model emerges naturally as the projection of the underlying branched
manifold onto the usual Hilbert-space description. Just as macroscopic variables like tempera-
ture carry an associated entropy, we associate ¢ with an entropy functional Se,[1], whose local
maximum characterizes equilibrium and plays the same role as a classical action. When the man-
ifold hovers near this maximum-entropy state, ¥ evolves deterministically—recovering unitary
Schrédinger dynamics—and only small fluctuations around the peak are allowed. The likelihood
of each individual branch can be determined by the amount by which that path changes the
total entropy of the branched manifold, and summing these weighted contributions over our fi-
nite set of paths yields a discrete analogue of the Feynman path integral. This finite sum of
amplitudes is a discrete version of the quantum path integral. However, if a strong interaction,
measurement, or environmental coupling pushes the manifold away from one maximum and to
another, the condition §S.,[¥)] = 0 no longer holds globally. The evolution then becomes intrin-
sically non-deterministic—mirroring wave-function collapse—yet the conserved branch weights
exert an entropic cohesion that keeps all branches closely similar, ensuring a well-defined single
macroscopic outcome even though its precise realization remains unpredictable.

Viewed more broadly, quantum superposition in this framework is nothing more than a finite
ensemble of branches drawn randomly from all possible branched manifolds. Unlike the standard
path integral, which integrates over an uncountable infinity of histories, our model requires only
a finite number of branches to produce interference, so long as more than one branch contributes
appreciably. By assuming a finite ensemble of branches, we derived a Wick-rotated path in-
tegral that has desirable convergence properties and resembles classical mechanics in the limit
of large action. Moreover, an intrinsic entropic pressure favors frequent intersections among
branches, effectively forcing them to recombine and collapse onto a single trajectory when driven
far from equilibrium. In this way, a single finite-entropy principle underlies reversible quantum
interference at the microscopic scale and irreversible, collapse-like behavior at the macroscopic
scale—bridging the quantum-to-classical divide without invoking any external measurement pos-
tulates.

Looking forward, it will be important to apply the branched-manifold construction to concrete
quantum systems, such as spin chains or harmonic oscillators, to quantify how the distribution
of branch weights affects interference and convergence toward classical trajectories. Extend-
ing the framework to mixed states and open systems will clarify how intrinsic entropic collapse
competes with, or complements, standard decoherence by an external environment. Moreover,
exploring how multipartite entanglement and many-body interactions shape the branched man-
ifold may reveal new scaling laws for the quantum-to-classical transition. Finally, one might ask
whether the branch-weight entropy principle can guide the design of novel quantum control and
error-correction schemes: by actively steering the manifold toward high-entropy configurations,
we may be able to stabilize coherent superpositions or guide faster collapse when a measurement
outcome is required. Each of these avenues stands to deepen our understanding of how a single,
finite-entropy principle orchestrates both quantum interference and classical emergence.
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