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Abstract

We use principles from the thermodynamics of spacetime to modify the path integral of
quantum mechanics. Entropy of the vacuum is interpreted as microstates that correspond
to the measure of the path integral. The result is a contribution to the action that is
proportional to the Einstein-Hilbert action. Because the contribution is real, not imaginary,
it is likely to result in convergence in many cases. Paths that minimize the Einstein-Hilbert
action make the largest contribution to the path integral, implying that the maximum
likelihood paths are solutions of the Einstein equation.
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The path integral formulation is a useful method for describing quantum systems. As applied
to quantum electrodynamics, for example, the path integral provides exceptional accuracy for
calculations [1][2]. In other cases, the path integral does not converge. Strong gravity in particular
has been notoriously difficult to incorporate into the path integral formulation [3]. Despite
the challenges of directly including gravity in quantum mechanics, alternative approaches have
produced interesting results. These alternative approaches include thermodynamic descriptions
of spacetime, which have demonstrated relationships between entropy, quantum mechanics, and
gravity [4][5][6][7].

In this paper, we claim that the entropy of the vacuum can be used to count quantum microstates
of the vacuum, and that count of microstates should be used to inform the measure of paths
that are considered in the sum of all paths of the path integral. Using these microstates in the
measure results in an additional factor in the path integral that includes scalar curvature and
produces solutions to the Einstein equation as paths of maximum amplitude.

In the ordinary path integral formulation of quantum mechanics, we can derive every property
of a quantum system using the partition function

Z = /eiSDcp, (1)

where ¢ is all fields, Dy is the measure in the integration over all paths in ¢, and S is the
classical action based on the Lagrangian density of matter £,,. We have

S = / Lo d*a. (2)

The naive method to include gravity in the path integral would include integrating over all paths
of the metric g by promoting Dy to DgDy. The classical action S on the fields would then be
promoted to the Einstein-Hilbert action

Spp = / (iR+£m)\/jgd4x7 3)

and the resulting path integral would have the form

Z = /eiSEHDngo. (4)

This path integral unfortunately does not converge in most cases [3]. To address this issue, we
examine the measure DgDy. To calculate this measure, we typically consider all paths that
interact with the real particles. How do we account for the virtual fields that do not interact
with real particles? How do we count paths that are only associated with the vacuum? The path
integral is a sum over all paths in configuration space. A path in configuration space consists of a
sequence of points in configuration space and the transitions between them, which is to say that
a path is a sequence of microstates. This implies that the number of paths in the path integral



scales like the number of microstates. We therefore consider microstates and vacuum entropy
when counting paths associated with the vacuum.

Jacobson showed that if the vacuum is in local equilibrium, then the thermodynamics of the
vacuum is sufficient to derive the Einstein equation [7]. Entropy of the vacuum is associated
with vacuum fluctuations of quantum fields. The local equilibrium condition is equivalent to
the vacuum entropy being in a state of local maximum. The Einstein equation is equivalent to
stationary action for the Einstein-Hilbert action, Sgpy. Local maximum entropy of the vacuum
is thus equivalent to stationary Einstein-Hilbert action. We therefore claim that the Einstein-
Hilbert action is proportional to a decrease in vacuum entropy .S,. In other words, matter and
curvature reduce the entropy of the vacuum by an amount AS,,, where we have

ASU X _SEH- (5)

Entropy is the logarithm of the number of microstates; thus, the number of microstates of the
vacuum scales in proportion to the exponential of —kSgy for some constant k. The number of
paths in the path integral scales in proportion to the number of microstates, and we therefore
propose to scale the measure DgD¢y by an amount e *5##  Thus we have

Z = /eiSEHekaEHDngo: /e(ifk)SEHDngo. (6)

Because equation (6) uses ¢ — k rather than just ¢ in the exponent, this formula resembles the
Wick rotated path integral of Euclidean quantum gravity [8]. Because k is real and positive,
this integral receives the greatest contribution from paths in ¢ and g such that Sgy is minimal.
These paths are solutions to the Einstein equation.

The path integral of quantum mechanics is a sum over histories. Here, we modify that path
integral to include histories with virtual particles that do not interact with real particles. As
such, the modified path integral of equation (6) may simply be a more complete sum over
histories. This modified path integral is more likely to converge, even in cases that include
strong gravity. For this reason, it may help address key questions in quantum gravity.

This formulation of the path integral uses Jacobson’s thermodynamic derivation of the Einstein
equation and is therefore subject to the same limitations. In particular, Jacobson’s derivation
presumes that the vacuum is in an equilibrium state with finite entropy. Subject to those condi-
tions, this path integral naturally incorporates gravity in a way that should allow for convergence
in a greater variety of circumstances. We hope that pursuit of this line of inquiry will produce
a more complete understanding of the path integral as applied to gravity.

We are grateful to Clovis Maia, Joshua Leeman, and Torsten Asselmeyer-Maluga for helpful
conversations.
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